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The onset of thermal convection in the presence of an oscillatory, non-planar shear 
flow is investigated on a linear basis. For the case of planar oscillations, the basic 
shear has no effect upon the value of the critical Rayleigh number but does act as a 
pattern selection mechanism. For the non-planar case, when there are two horizontal 
components of the basic velocity, the same result is true if the components are either 
in phase or directly out of phase. For the general case, however, stabilization occurs 
because convection rolls experience the stabilizing effects of shear regardless of their 
orientation. The results are obtained both by expansion in terms of the amplitude of 
the oscillating flow and in terms of its frequency, assuming the frequency to be small. 
The degree of stabilization increases with the Prandtl number. Pattern selection still 
occurs with non-planar oscillations. 

1. Introduction 
There have been many investigations concerning how a periodic modulation with 

time of the temperature difference across a horizontal fluid layer initially at rest 
affects the onset of Rayleigh-BBnard convection. Many of the results obtained on the 
basis of both linear theory and energy theory have been reviewed by Davis (1976). 
For the case, say, of modulation of the temperature on only the lower boundary, use 
of linear Floquet theory predicts that the critical Rayleigh number (Ra,) will be 
greater than the case without modulation, with the maximum effect occurring in 
general near a Prandtl number of unity and in the quasi-steady limit (non- 
dimensional frequency p2 +- 0). The stabilization predicted by theory was observed 
experimentally, at  least at relatively high frequencies, first by Finucane & Kelly 
(1976), and more recently by others as summarized by Donnelly (1990). A t  low 
frequencies, however, the linearized result is invalid for two reasons. First, transient 
convection was observed during part of each cycle by Finucane & Kelly (1976) so 
that the use of Floquet theory, which concerns the net growth or decay of a single 
disturbance over a cycle, no longer describes realistically the response of the system. 
This aspect of the problem has been discussed in considerable detail by Barenghi & 
Jones (1989) for the analogous problem of modulated Taylor-Couette flow. Second, 
hexagonal convection can occur at  subcritical values of the Rayleigh number which 
can invalidate the linear results; see Roppo, Davis & Rosenblat (1984) and Meyer, 
Cannell & Ahlers (1992). 

Corresponding results for the case when the fluid oscillates, say, about a zero mean 
velocity and with constant wall temperature, are apparently not available in the 
literature, although such oscillations can occur readily in applications. For the case 
of a steady, fully developed, horizontally unbounded, unidirectional shear flow, it is 
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well-known that the shear has no effect upon Ru,. This result occurs because the 
shear stabilizes all buoyancy-driven disturbances except for those with zero 
streamwise wavenumber, i.e. disturbances which are spanwise periodic ; see e.g. 
Fujimura & Kelly (1988) and the references listed there. For such disturbances, 
usually called longitudinal rolls, the basic flow does not enter into the equations 
governing the cross-stream disturbance velocity components and the temperature 
disturbance that give rise to the eigenvalue problem for Ra,, which therefore has the 
same value for longitudinal rolls as the case without shear. The shear acts essentially 
as a pattern selection mechanism because a preferred wavenumber vector occurs for 
the case with shear. For certain applications (e.g. situations involving a phase 
change), this can be important because a very well-defined state of convection occurs 
for Ra somewhat in excess of Ra, rather than the rather jumbled state typical of the 
case without shear or forcing. In some situations, it might be easier to impose a 
periodic shear on the system than a steady one. For the case of a unidirectional but 
time-wise-periodic shear, the same result should be expected at  sufficiently low 
values of p2. Kelly & Thompson (1988) have shown that the same result also occurs 
at higher values of ,!P; their results are contained in the present ones and, in an 
appendix to this paper, the disturbance energy equation is examined in order to 
clarify the physical basis for this result. 

For the case when non-planar oscillations occur, i.e. there are two components of 
the basic flow in the horizontal plane which are out of phase, the present analysis 
indicates that stabilization is predicted on the basis of linear theory. The effect is a 
maximum for high Prandtl number fluids as the frequency tends to zero, at least for 
the case of a shear due to a single oscillating wall. For the present case, it will be 
argued that the quasi-steady result is indeed meaningful within the context of linear 
theory. Whether or not the linear result is meaningful requires further analysis of the 
nonlinear problem. 

2. Formulation 
We assume that the Oberbeck-Boussinesq equations are applicable, namely, 

1 

Po 
c* + v* - V v* = - - Vp* - ag( T* - T,*) + v,V2 V*, ( 2 . 1 4  

T$+ V*.VT* = K,,VT*, (2.lb) 

v -  v* = 0, (2.lc) 

where V* is the velocity, p* the pressure, T* the temperature, g gravity, v,, kinematic 
viscosity, K~ diffusivity, a the expansion coefficient, and po and TZ are reference 
density and temperature, respectively. Let x* and y* denote dimensional spatial 
variables in the plane of the fluid layer and z* be distance normal to this layer. 

The basic flow is periodic in time t* with frequency w* and has two components so 

V*(z*, t* )  = i,. U*(z*, t*) +iu* V*(z*, t*).  (2.2) 

The fluctuating flow is considered to be either of the Couette type (case I) driven by 
wall oscillations of the form 

U*(O, t*)  = 0: coso*t*, 

V*(O, t*)  = v$ cos (w*t* +yo) ,  

U*(h, t*)  = 0; cos (w*t* + CT), (2.3a, b) 

(2.4a, b )  V*(h, t * )  = r: cos (u*t* +yl), 
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where h is the depth of the fluid layer and r ,  yo, and y1 are phase angles, or of the 
Poiseuille type (case 11) driven by oscillating pressure gradient of the form 

where L,. and L,, are characteristic lengths in the x*- and y*-directions and AT* 
denotes a pressure difference. If we now introduce non-dimensional variables of the 
form 

(2 .6 )  
then U*(z,t) say, for case I, is given by the solution of 

(5, y, 2) = ( X * / h ,  y*/h, z*/h), t = w*t*, 

2p2 au*/at = aw*/az2, (2 .7a)  

U*(O,t) = O:cost, U * ( l , t )  = U$A,cos(t+a), (2 .7b )  

where A,  = U:/U$ and p2 = w*h2/2vo. We will be interested mainly in the cases when 
A,  = 0 or 1 and r = 0 or n. Let 

U(z, t )  = U*/O' = +g0(z) eit ++J0(z) ePit +iA,  q41(z) ei(t+u) +LA 6 ( z )  e-i(t+u), (2.8) 

where (") denotes the complex conjugate of any quantity. The functions $o and g1 are 
given by 

2 x 1  

e(l+i)/3(l-z) - e-(l+i)p(l-z) 

+o(z) = e(l+i)p-e-(l+i)F (2.9) 

and $1(4 = $o( l -Z) .  (2.10) 

A similar solution holds for V*(z,t)  with V t  serving as the characteristic velocity, 
namely, 

$ (2) ei(t+yo) + 16 e-i(t+Yo) +LA $l(z) ei(t+yi) + 1~ 6 (2) e-i(t+yi), V(z ,  t )  = V*/V$ = ; 0 2 0  2 ,  2 Y l  

where A,  = c/V: (2.11) 
~~ 

For case I1 when the flow arises due to the oscillating pressure gradients (2.5a, b ) ,  
U*(z, t )  is given by the solution of 

(2.12a) 

(2 .12b)  

(2.13) 

i e(l+*)Bz- e-(l+i)Bz e(l+i)j3(1-z) - e-(l+i)p(l-z) i 
# ~ ( z )  = 2 ~ 2  e(1+i)p-e-(l+i)/3 }-+{ e(1+i)j3-e-(l+i)p }+@. (2.14) - 1  

Naturally a similar solution holds for V*(z,  t )  with U: = (AT), h2/pL. 

independent of the flow oscillations and is given by 
Assuming that viscous dissipation is negligible, the basic temperature T*(z*) is 

(2 .15)  T*(z*) = T*(O) - (z*/h) AT, 

where AT' = T*(O) - T*(h) = constant. 
Now let 

V* = i, { 0: U+ ( ~ ~ / h )  u} + i, { V: 8+ ( K o / h )  v}  + i z ( K o / h )  w, (2.16 a )  

T = T*(z*) +Ape, (2.16a) 
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where u, u, w and 8 depend on x, y, x ,  t .  After substituting (2.16a, b )  into ( 2 . 1 ~ - c )  and 
linearizing about the basic state, the following two equations can be obtained by 
manipulation for w and 6 :  

{ 2 p a ~ + R e , U - + R e y  a a2uaw a2vaw 

az2 ax y a22 ay V'w-Re,---Re -- = RaVf6,  (2.17a) 
ax 

(2 .17b)  

Re, = o$ h/vo ,  Re, = v$ h/vo, Pr = vO/KO, Ra = crgATh3/vo K,,, (2.18) 

(2b2Prt+RezPr a U-+Re,Pr a 
ax: 

where 

if 0; = Ut  (case I) or 
surfaces, and so the boundary conditions are 

= 0; (case 11), etc. We consider the case of rigid, isothermal 

w = aw/az = 6 = 0 at x = 0 , l .  (2.19) 

w(x, y ,  x, t )  = W(z,  t )  ei(kzs+kuY) + c.c., (2.20 a)  
6(x, y, z ,  t )  = O(z, t )  ei(kzx+kyy) + c.c., (2.20 b )  

Now let 

where ex. denotes complex conjugate. 
The linearized stability problem consists of solving 

(za a -I- ik, Re, U +  ik, Re, V -  ($ - k2)}  ($- k2)  W 

a2U a2v 

a 2 2  a X 2  
-ik,Re,- W-ilc,Re - W = -k2Ra0,  (2.21a) 

( 2 . 2 1 b )  
a 
at 

{2,@ Pr -+ ik, Re, Pr U +  ik, Re, Pr 8- (& - k')) 0 = W ,  

subject to the boundary conditions 

W = aW/az = 8 = 0 at z = 0 , l .  (2.22) 

3. Expansion in terms of Reynolds number 
In order to determine Ra,, it should be realized that it is a function of many 

parameters, namely, Ra, = Ra, (Re,, Rey, Pr, p, A,, Ay ,  (T, yo, yl, k,, k,) and so some 
limiting cases should be examined prior to a general analysis in order to provide a 
framework. We first consider the case of small-amplitude oscillations. We define Re, 
= Re and h = Re,/Re and expand in terms of Re with h fixed, i.e. we expand as 

W(z, t )  = Wo(z)+Re Wl(z,t)+Re2W2(z,t)+ ..., (3 . la)  
O(z,t) = 8,(z)+ReO,(x,t)+Re2@,(z,t)+ ..., (3 . lb)  
Ra = Ra, = RaC,,+ReRa,+Re2Ra2+ .... ( 3 . 1 ~ )  

Thus, as Re-tO, Ra is equal to the critical Rayleigh number for the case without 
shear (Ra,,,) and we wish to see how this critical value is affected by the oscillations. 
It can be argued that the change in Ra, should not depend on the sign of Re, which 
is tantamount to a change in phase of TC, and so Ra, = 0 (as can be demonstrated at 
O(Re) explicitly). 

As Re + 0, we have the standard equations governing Rayleigh-BBnard convection 
when Ra = Ra,, namely, 

($--k2T W,-k2Ra,,,8,, = 0, (-&-k2)eo+W0 = 0, (3.2a, 6) 
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where k2 = lc:+ k i  = k:,,. We will set k2 = k:,, x (3.117), in the following. At O(Rel),  
the governing equations are 

{ 2P2 i- ($- k')} (&- k 2 )  W, + E 2  Ra,,, 0, 

Notice that we can make the non-homogeneous terms zero for V = 0, k ,  = 0 (so 
k ,  = k , ) .  These solutions correspond to longitudinal rolls, whose onset is unaffected 
by the unidirectional shear. 

The boundary conditions (2.22) are imposed a t  every order. In  order to minimize 
the length of the equations, we now focus on case 1 when A,  = A ,  = 0, which is 
sufficient to demonstrate the method of analysis. Results presented later for Case I 
for A ,  =t= 0, A ,  =!= 0 and also for Case I1 have been obtained by use of the same basic 
approach. We let 

w,(z, t )  = wl1(z) eit + @,,(z) e-'t + w,,(z) ei(t+yo) + @ 1 2  ( z )  e-i(t+Yo), (3.4a) 

o,(x, t )  = o,,(z) eit + 611(z) e-it + o,,(z) ei(t+yo) + 6,,(z)  e-i(t+yo). (3 .4b)  

Thus, the subscript ( )11 refers to  interaction between the Rayleigh-BBnard 
convection and the oscillatory flow in the x-direction, whereas ( )12 refers to 
interaction between the convection and the Aow in the y-direction. For brevity, the 
equations for (W,,, O,,), (ql, g1,), (W12, oI2) and gl2) are omitted. 

Proceeding now to O(Re2), we have 

(2,P;- ($ - P)) (&- k2)  W2 + Ic'Ra,, , 0, 

= -i(kxlJ+hk,V) W,-E2Ra,0,, (3 .5a)  

{2P2Pr$- ($- k 2 ) }  0, - W2 = -i P r  ( k ,  U+ hk, V )  0,, (3 .5b)  

and so we seek solutions of the type 

wz(z, t )  = w2,(z) + w,,(z) ezit+ e2,(z) e-2it+ W,,(z) e2i(ti-ro) + I$' 2 2  ( z )  e--li@+yo), 

0 , ( z ,  t )  = 0,,(z)  + @,,(z) eZit + 6.,,(z) ePzit + @,,(z) ezi(t+yo) + 6 22 ( z )  e-2i(t+yo). 

(3 .6a)  

(3 .66)  

As far as the determination of Ra,  is concerned, we only have to consider the steady 
components W,, and @,, because the equations governing them determine Ra,  via a 
solvability condition. After substituting (3.6a, b )  into ( 3 . 5 ~ ,  b ) ,  we obtain 

( g - k 2 ) 1  W2,-k2 Ra,,,O,, = - ~ ( ~ ~ + 2 h k x k , c o s y , + h 2 k ~ )  

x [ ~ 0 ( ~ ~ , - k 2 ~ ~ l ) + ~ o ( F ~ , - l c 2 F l l ) - ~ o F , , - ~ o ~ l l ] + k 2 R a , 0 , ,  ( 3 . 7 ~ )  

(2- k2) o,, + w,, = -+P. (k: + 2Ak, k ,  cos yo + A%;) ($75, GI, + 4, C,,), (3.7b) 

13 PLM 249 



378 
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W,, = ik,F,,, Wll = ikxpll, O,, = ik,G,,, Gill = ikxGll, (3 .8a)  

W,, = ihk,F,,, W,, = ihk,E;,, O,, = ihk,G,,, G12 = ihk,6,,. (3.8b) 

We noted after (3.3a, b )  conditions under which the non-homogeneous terms are zero 
in those equations and naturally the same conditions cause the non-homogeneous 
terms in (3 .7a,  b )  to be zero. For these special cases, we can conclude that Ra, = 0. 
For general A, however, the coefficients involving k, and k, are non-zero. Say that we 
express k, and k, in terms of the amplitude (k) and angle (0) of the wavenumber 
vector, i.e. we let 

We then have that the coefficient appearing in (3 .7a,  b )  is equal to 

- 

k, = k cos 8, k ,  = k sin 0. (3.9) 

(Icz + 2hk, k ,  cos yo + = k2 (cos2 8 + h2 sin2 8 + h cos yo sin 28) 
= k2 { (cos 8 + h cos yo sin 8), + h2 sin2 8 sin2 yo} 

= kZK(8, A,  yo). (3.10) 
def 

For h = 0 corresponding to shear in the x-direction only, we can say that (3.10) is 
equal to zero if k, = 0, which corresponds to longitudinal rolls (8 = +$). 

In  order to determine Ra,, we obtain the solvability condition for (3 .7a,  b )  by 
multiplying (3 .7a)  by W,, (3.7b) by ( -E2Ra, , ,O0) ,  integrating from z = 0 to  I ,  and 
adding the results, as follows: 

- & F,, - q5:pll} Wo - k2 PrRa,, , (q5,  6,, + 6, Gll} O,] dz. (3.11) 

Divide through by the coefficient of Ra, to get 

Ra, = !#3i? (3.12) 

where 98 is the ratio of the integral of the terms in brackets on the right of (3 .11 )  to 
the integral of Woo,  and is a function of p and Pr only. Numerical results to be 
presented shortly indicate that in general W > 0. As B- co, B + 0 because the 
unsteady Stokes layer is very small in comparison to the depth of the layer. 
Otherwise, 92 > 0, which implies, as we now show, that Ra, > 0 if h + 0, co (i.e. non- 
planar oscillations occur) and yo + 0 or n. 

Returning to (3.10), note that 

aK/ayo = - h sin yo sin 28, (3 .13 )  

and so K has an extremum for yo = 0 or 7t, corresponding to the case when U and 17 
are either in phase or out of phase by 180". For yo = 0, K = 0 if t an8  = - -X I ,  
whereas, for yo = n, K = 0 if t an8  = h-l; in either case, longitudinal rolls that are 
unaffected by shear are possible in a suitably redefined coordinate system. For the 
other values of yo, however, K is clearly greater than zero, leading to the conclusion 
that non-planar oscillations are stabilizing in general. In  view of the above result, it  
would seem that the largest amount of stabilization occurs when the oscillations are 
as 'non-planar as possible', i.e. yo = +in, as follows also from (3.10). For this choice 
of Yo, 

K =  (cos28+A2sin28) > 0, (3.14) 

aK/a0 = (A2 - 1) sin 20, (3.15) 
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and so K is a minimum for 8 = if A < 1 and likewise for 0 = 0, K if A > 1. Thus, 
a preferred pattern is predicted on the basis of linear theory for all values of A. For 
h < 1,  we have longitudinal rolls with their axes in the x-direction. For h > 1,  
longitudinal rolls with axes in the y-direction are preferred. For h = 1 and yo + 0, 7[: 

or +_in, the rolls are oriented a t  an angle of 45' to the x-axis (but no preferred 
orientation exists if yo = &in), 

So far, we have considered only the case when A, = A,  = 0, i.e. only the lower wall 
moves while the upper wall is stationary. The value for W is, of course, unchanged 
if the upper wall oscillates while the lower wall is stationary. The general case when 
A,  and A,  are non-zero and differ in magnitude and when the phase angles (T, yo and 
y1 all differ is complicated, and it does not seem possible to reduce the results to a 
simple form. Two special cases, however, can be so reduced and indicate what might 
be expected for the general case. In  both cases, we set A ,  = A ,  = A .  For case (i), the 
top wall oscillates in each direction in phase with the lower wall, and so, with 
reference to (2.3a, b )  and (2.4a, b) ,  we take (T = 0, y1 = yo. For case (ii), the top wall 
is exactly 180" out of phase with the bottom wall, and so c = K, y1 = y 0 + x .  For 
either case, Ra, can still be expressed in the form (3.12), so that all the above 
comments concerning the effect of yo and h for the case when the upper wall is a t  rest 
are still applicable. The definition of 92, however, is now different but is rather 
lengthy and will not be given explicitly. Suffice it to say that, for case (i), W-tO as 
p+O because we have oscillating plug flow with zero shear in this limit. This means 
that for case (i) there are additional terms in the definition of W which must be 
subtracted from those given on the right in (3.11), a t  least in the limit ,f?+ 0. For case 
(ii), these same terms change sign and so add to the terms in (3.11). Thus, an out-of- 
phase oscillation of 180" between the upper and lower walls is more stabilizing than 
having only the lower wall oscillating as one might expect. 

Numerical results for Ra, will be given in $ 5 ,  after the limit /3+0 is discussed. 

4. The low-frequency limit 
As /?-to, the expansion (3.1 a-c) is no longer suitable from a numerical viewpoint 

as a means for calculating Ra, because certain individual terms in (3.11) diverge, 
although the factor W certainly has a limiting value related, as we shall show later, 
to the degree of stabilization of transverse rolls due to a steady unidirectional shear. 
The low-frequency expansion done in this section not only eliminates this difficulty 
but also gives additional insight into the nature of the disturbed flow in this limit. 
A brief summary of this analysis and the corresponding results has been given by 
Kelly (1992). First we define 

W(z, t)  = W*(z, t )  exp @(?) d?/2P2 = W*E(t), @(z, t )  = @*(z, t) E( t ) .  (4.1 a, b )  (S i def 
Upon substitution into (2.21 a, b ) ,  we obtain 

{ @( t) + ik, Re, U + ik, Re, V -  ($ - k2)} (g - k") W* 

a 2  u a2v 

a z 2  y a 2 2  
+ 2p2 (g - k2) - ik,Re,- W*-ik,Re ~ W* = -k2RaO*, (4.2a) 

a@* 
at 

Pr@(t)+ik,Re,PrU+ik,Re,PrV- @ * + 2 P r p -  = W*. (4 .2b)  

13-2 
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If we again let Re, = Re, h = Re,/Re,, we conclude from (4 .2a,  b )  that  @(t)  - O(Re) 
if h N O(1) and if we expand about the neutral state where Ra = Ra,,,. From the 
definition of E in (4.la), we expect E - O(1) when Ra = Rae for 0 < Re < 1, and so 
we conclude that we should consider the case when Re - O(p”). For simplicity, we 
define now p” = S and expand in terms of S as 

We also define Re = 6Rel. Because we are expanding about a neutral state for which 
the principle of exchange of stabilities holds, we set @, = 0. The equations for W t  and 
O: are the same as those for W, and O,, namely, (3 .2a)  b) .  We set k: = k, and consider 
(again for simplicity in the presentation of the analysis) only case I when A ,  = 

A ,  = 0. The terms corresponding to the low-frequency analysis of #, are as follows: 

(4.4a, b )  
def 

$oo(z)  = 1-2 ,  q5,,(z) = $(I -2) (2’-22) = +ifl 

(when Re N O(/P) ,  4,’ is not required to determine Ra,,,). After substituting (4.3a-e) 
into (4.2a, b ) ,  we obtain a t  O(S) the following equations: 

(;-PI W;” - k2Rac,o O,* = [Gl +iRe, (k,( 1-2)  cost +hk,( 1-2) cos (t+y,)}] 

( 4 . 5 ~ )  

(g - k2) 0: + W: = [Pr + i RelPr {k,( 1 - z )  cost+ hk,( 1 - z )  cos ( t+  yo)) ]  0: 

a@* 
at 

+ 2 P r L .  (4.5b) 

We express W:(z, t )  and O,*(z, t)  as 

where Fo(z) and G,(z) satisfy the same ordinary differential equations as W: and 0:. 
If we substitute (4.6) into (4 .5a,b)  and again develop a solvability condition as in 
$3, we obtain the following equation governing A ,  and : 

d A 1  
2 2  [ 1, Fo6(Fi- k2Fo) dz - k2 Rac,,Pr J: G‘i dz] 

dt 

+ G1 A ,  [ J: Fo(Fi - k’F,) dz - k2 Ra,, Pr Gi dz 1: 1 
+iRelA, (k,cost+hk,cos @+yo)} ( 1  -z)Fo(J’;-k2Fo)dz 

- k2 Rae, , Pr 1; ( 1 - z )  Gi dz}] + k2 Rae, A ,  1; Po Go dz = 0. 

[ {I: 
(4.7) 
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If we consider for the moment that case when Re, = 0 and Ra > Ra,,,, then either the 
term involving dA,/dt or that involving 0, can be used to calculate the linear growth 
rate due to our scaling. In  (4.7), the term involving Re, is imaginary, and we balance 
it by the imaginary part of @,, namely, Qli. We can then satisfy (4.7) by taking 
A ,  = constant = a,, Olr = 0 ,  Ra,,,  = 0 ,  and 

where 

and 

- C, Re, { k ,  cos t + hk, cos ( t  + yo))  
Qli = 

Cl 
3 

F,(F;I - k2Fo) dz - k2 Pr Ra,, , Gi dz f (4.9a) 

(1 - z)F,(F;I - kzFo) dz- k2 PrRa,, , (4.9b) 

If the analysis were to be repeated for the case of a steady shear flow in, say, the x- 
direction for disturbances with k, = 0, then we would have p" = Re (so Re, = l),  and 
we would find that Gli = - C, k,/C,, so that (C,/C,) corresponds to a wave velocity 
in the x-direction. Thus, Gli represents a phase function for the unsteady problem. 
Note that t = w*t* = 2p2 Pr7, where 7 is a time variable based on the diffusion 
timescale h2/Ko; hence, t - O(b2) for p2 < 1 if the diffusion timescale is used. 

With A ,  and Q1 determined so as to satisfy the solvability condition, then we can 
say that a solution exists a t  O(S) of the form 

W,*(z, t )  = i Re, { k ,  cos t + hk, cos ( t  + yo)}  a,F,(x), 

O,*(z, t )  = i Re, { k ,  cos t + hk, cos ( t  +yo)}  a, G,(z), 

( 4 . 1 0 ~ )  

(4.106) 

where the equations for Fl and G ,  are omitted for brevity. 

are, after substituting for W: and OT, 
We now go on to O(S2)  in order to determine Ra,,,. The equations for W,* and @,* 

(&-k2)l  W,*-k2Ra, , ,0 ,*  = @2(F~-kaFo)ao  

-Re;{k, cos t+  hk, cos (t+ yo)}2 ( 1 --x -- ;;) v;- k2Fl) a, 

- 2i Re, { k ,  sin t + hk, sin ( t  + yo)}  ( F ;  - k2Fl) a, 

-5; Re, {k,sint+hk,sin (t+yo)}{fl(F~-IC2Fo)-f;Fo}a,+IC2Ra,,2G,a,, (4.110,) 

(&- k 2 )  @,* + W,* = Pr [G2 Go a, -Re: { k ,  cost + hk, cos ( t  + yo)}2 

x G,a,-ZiRel{k,sint+hk,sin (t+y,)}G,a,-$Re,{le,sint+hk,sin ( t+yo)) f l  G,a,]. 
(4.1 1 b )  

If we multiply (4.11 a )  by F,, (4.1 1 b)  by ( -  k2Ra,,, Go), integrate and add the results, 
the solvability condition is obtained as 
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Q2 {l Fo(F: - k2Fo) dx - k2 Pr Ra,,o Fo Go dz - Re: ( k ,  cos t 

- 2i Re, { k ,  sin t + hk, sin (t + yo)}  Fo(F: - k2Fo) dz - k2 Pr Ra,, 

- $i Re, fk, sin t + hk, sin (t + yo)} fi F,(Fi - k2Fo) dz - 

- k " P r R a , , o ~ ~ f l ~ ~ d z }  = 0. (4.12) 

Now Fo, Go, F,, G,,f ,  and C,/C, are all real, and so it is clear that @, is complex. The 
imaginary part of @z gives a correction to the phase function arising from higher- 
order terms in the velocity profile as well as the time-derivatives of WF and 0:. The 
real part of G2 can be identified as variation with time of the amplitude of the 
disturbance and is determined by the relation 

~ o G o d ~ - R e , 2 { k , c o s t + h k , c ~ ~ ( t + ~ o ) } 2  

x { J: ( 1  - z -$)Po (Fl - k2FJ dz- k2 PrRa,, 

Now some of the explicitly time-dependent terms in (4.13) are periodic and can be 
accommodated by choosing Qzr properly, which would also be periodic in time. 
However, a non-zero mean value of @,, (> 0) would give rise to unbounded growth 
in time, and so we must have mar = 0, where the average is over one cycle of 
oscillation. When we use this average in (4.13), we obtain 

x { 1; ( 1  - z - 2 ) F o ( F ;  - k2F& dz - k2PrRa,, , 1 - z -- Go G ,  dz . (4.14) I:( 2) I 
The conditions for which the term involving k ,  and k ,  in (4 .14)  is zero are discussed 
after (3.12); for A =!= 0 and yo =I= 0, 'IC it is non-zero. For h = 0, the term is zero for 
longitudinal rolls ( k ,  = 0). The conditions for which this term is an extremum are 
discussed after (3.13). P. Hall has pointed out to the authors that this result for Ra,,, 
holds also for the case when Re - 0(/3). 

The actual value of Ra,,2 can be found by using established results for steady 
Couette flow (Ingersoll 1966) for Re Q 1 because we are considering the quasi-steady 
limit. Thus, if we consider the case of a steady shear in, say, the x-direction and 
consider only transverse disturbances ( k ,  =/= 0, k ,  = 0) ,  we let 6 =Re  in (4.3a-e) and 
expand in terms of Re for Re Q 1 when u" = 0, where the lPj  are now constants 
and Ra,, --f (Ra,,2)p-o. The other variables are expanded in a similar manner. 
At lowest order, Go = 0 whereas a t  O(Re) we find that 

@1 = -ikz((72/Q,), 
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where C, and C ,  are the same as defined in (4.9u, b) .  For the case of steady shear, 
C2/Cl represents a wave velocity, as noted after (4.9). Continuing on to O(Re2), a 
solvability condition yields the result 

(%,z)j3=o = 3 (4.15) 
1: (1 - z  -$)Fo(F,- k2F,) dz - k2PrRac, 1 - z -2 Go G,  dz 

Fo Go dz 

Now (4.14) is the same as (4.15) except for the factor of (1s) which is equal to one- 
half if we take k ,  = 0 so k = k,. The factor of one-half occurs in (4.14) because the 
effectively steady shear there is equal to the mean-squared value of the oscillatory 
shear. Thus, we can say 

(Rat, 2)o < p2< 1 = %(%, z)p=o, (4.16) 

where an explicit result for (Ra,, z),+o on the right has been given by Ingersoll (1966) 
as follows for lc = k,, : 

(Ra,, z)j3=o = 0.5598Pr2+0.1270Pr+ 0.06451. (4.17) 

Clearly, (Ra,,z)8=o is equal to the factor 9 in (3.12) as ,!?-to. It is worth noting that 
Ingersoll’s result predicts that Ru,,, > 0 and that Ra,,, increases as Pr increases, 
which results are, of course, consistent with the results of $3. The result (4.16) allows 
us to predict R U , , ~  for /3, 4 1 for general k,, k,, yo and h without further numerical 
integration. Together with the results of $3, we conclude that stabilization occurs in 
the quasi-steady limit B2 + 0 although it should be emphasized that we have taken 
Re - O(p”). The case when B2+0 with Re fixed so 0 < Re < 1 requires a separate 
analysis. 

For the case when both walls oscillate so that the shear of the basic flow is non- 
planar as ,!?+ 0, it is not surprising that Ra, is changed for Re > 0. The above analysis 
indicates, however, that the same result holds when only one wall oscillates (i.e. A,  = 

Ay = 0), which might seem to be surprising because it would seem that the shear 
would then instantaneously be in one direction. If so, one might expect rolls to form 
whose axes would change in time so as to  point in this direction. However, the 
boundary condition at the stationary upper wall would cause a shear to be exerted 
so as to oppose this change in orientation. Actually, the basic shear even for this case 
is non-planar for any /3 > 0 which can be seen by considering the special case h = 1 
and yo = -kin. For this case, the motion of the lower wall is equivalent to a rotation 
of the velocity with angular velocity w about the z-axis, and so one sees the lower wall 
moving in a fixed direction if one adopts a coordinate system rotating with this 
angular velocity. However, the upper wall is then seen as rotating in the opposite 
direction, thereby creating non-planar shear. 

5. Numerical results 
Numerical values of W as defined by (3.1 1 )  and (3.12) as a function of p and Pr will 

now be presented. These were obtained by first evaluating the functions Fll, etc. by 
a shooting method employing a fourth-order Runge-Kutta scheme and then using 
Simpson’s one-third rule for quadrature. 

The results for oscillations of the lower wall only (i.e. A,  = Ay = 0) are presented 
in figure 1. It was found that the data could be shown on a single diagram by plotting 
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FIGURE 1. The stabilization factor W for non-planar oscillations of one wall as a function of the 
non-dimensional frequency p. (i) Pr = 0.5, (ii) Pr = 1, (iii) Pr = 2, (iv) Pr = 10, (v) Pr = 1000. 

0 100 200 300 400 

,P Pr 
FIGURE 2 .  The stabilization factor W for transverse disturbances due to two walls oscillating in 

phase as a function of the non-dimensional frequency /3. 

B/€’r2 as a function of p” Pr. The former quantity was suggested by the quasi-steady 
result (4.16), (4.17) for Pr % 1 ,  whereas the latter quantity is the effective non- 
dimensional frequency in the energy equation (2.233). Although the maximum value 
of 9)lPr2 decreases as Pr increases, the actual value of 9 increases with Pr in 
accordance with the results of the previous section. The range of p”Pr over which 
B/Pr2 is significantly greater than zero is almost independent of Pr, indicating that 
the effect is correlated with the ratio of the unsteady thermal boundary-layer 
thickness associated with the interaction to the depth. For Pr > 2, maximum 
stabilization occurs as p- 0 and the amount of stabilization is in agreement with the 
quasi-steady result. For values of Pr less than two, however, the curves are not 
monotonic and the maximum degree of stabilization occurs a t  some /3 > 0. 

The results for stabilization of transverse rolls when both walls oscillate in phase 
in the x-direction are shown in figure 2 for Pr = 1 and 10. For this case, of course, 
stabilization is not realizable because longitudinal rolls become unstable when Ra > 
Ra,,,. In the light of the comments made at the end of $3, however, the results are 
characteristic of the non-planar case when stabilization is achieved if the upper and 
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lower walls have velocity components in the x- and y-directions that are in phase 
(although the x-component and y-component are not in phase or directly out of 
phase, i.e. yo + 0, n). For this case, the amount of stabilization tends to zero as /3+0 
as well as when /3+ co, because the shear vanishes as p + O .  Thus, the convection 
cells are not tilted in this limit. Therefore, it is not surprising that a maximum degree 
of stabilization occurs at a non-zero value of p for this case. Although the amount of 
stabilization achieved in this case for Pr = 1 is comparable to  that shown in figure 
1, curve (ii), the amount achieved when Pr = 10 is an order of magnitude less than 
that shown in figure 1 ,  curve (iv) for which the greatest stabilization occurs as 

Finally, the results for pulsating Poiseuille flow are shown in figure 3. For both low 
and high values of Pr, the maximum degree of stabilization occurs as p+O. I n  this 
limit, the numerical results agree with those given in Appendix A of the paper by 
Muller, Lucke & Kamps (1992). However, the correlation of the results with the 
parameter p2Pr is not as good for Poiseuille flow as for Couette flow (figures 1, 2). I n  
constructing figure 3, the maximum velocity as p+O, namely, QO,* was used as a 
reference velocity in order to have the amount of stabilization occurring in the quasi- 
steady limit to be comparable to  that shown in figure 1 .  

p+0. 

Pr = 1 

6.  Summary and conclusions 
Although oscillatory flow alone one axis servw as a wavenumber selection 

mechanism just as a steady shear flow, non-planar oscillations have been shown to  
have a stronger effect upon the onset of thermal convection. They not only act, a t  
least on the basis of' linear theory, as a pattern selection mechanism, but also actually 
stabilize the system, i.e. the critical Rayleigh number is greater (in general) when 
non-planar oscillations occur than when they do not. The effect seems to be 
associated strongly with the stabilizing effect of a steady non-planar shear flow upon 
arbitrarily orientated disturbances. I n  general, the amount of stabilization is 
greatest as the non-dimensional frequency parameter tends to zero and as the 
Prandtl number becomes large. 

The actual amount of stabilization shown in figures 1-3 is rather slight for the 
small values of Reynolds numbers pertinent to  this analysis. However, the same is 
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true for the case of a steady shear. But it is known that a steady shear can profoundly 
affect the value of the critical Rayleigh number for transverse disturbances when 
values of Re of O( 1) or more are considered. For instance, for Couette-Poiseuille flow, 
Fujimura & Kelly (1988) found that Ra, for transverse disturbances was between six 
and ten times the value without shear even for a low Prandtl number fluid (Pr = 

0.51) when the characteristic Reynolds number was equal to 100 (which, after all, is 
not all that large as far as Reynolds number go ; transition for steady planar Couette 
seems to occur at Re w 1000 (Reichart 1959) and for an unbounded unsteady Stokes 
layer at  Re fi: 600/,8 (Monkewitz & Bunster 1987)). It remains to be seen whether or 
not similar stabilization occurs for the case of non-planar oscillations when Re is large 
but, in view of the low-frequency results obtained above for small values of Re, there 
is every reason to be optimistic. 

In considering the possibility of stabilization, we have to bear in mind the fact that 
only a linear analysis has been made here. We therefore have to assume that a 
supercritical bifurcation occurs, which is indeed the case for steady Couette and 
Poiseuille flow when heated from below (Clever, Busse & Kelly 1977 and Clever & 
Busse 1991). Hence, there is reason to expect a supercritical bifurcation for low 
values of ,l3. The situation is basically different from the case of temperature 
modulation for which Roppo et al. (1984) have found a subcritical instability at  low 
values of ,l3. In  their case, modulation of the temperature difference meant that 
symmetry of the basic state was lost, and so subcritical instability came perhaps as 
no great surprise. In the present case, however, the basic temperature always exhibits 
a linear variation with z, and so there is no obvious reason t o  expect a subcritical 
instability. 

Various applications of the above concept to other problems concerning thermal 
convection can be made. For instance, the occurrence of thermal convection in a 
shear flow has importance for horizontal chemical vapour deposition reactors with 
through-flow, as discussed by Evans & Grief (1989). The Reynolds number associated 
with the mean flow is usually moderate ( N 20). For that case, the mean shear itself 
stabilizes transverse disturbances and so it is sufficient to impose only an oscillation 
in the cross-flow direction in order to stabilize the system as a whole. For small but 
comparable values of the Reynolds numbers associated with the mean shear Re, 
(assumed, say, to be in the y-direction) and the oscillation Reynolds number Re, 
(associated, say, with an oscillation in the x-direction) the results given by (3.12) for 
h = 0 and (4.17) can be combined to yield the relation 

Rae-Ra,,, = @ e i  cos2f393(Pr,p) +Reisin28Q(Pr), (6.1) 

where &(Pr) is defined by (4.17). It should be worth noting that this result holds only 
if the imposed frequency differs from the intrinsic frequency associated with any 
mean convective effect, which case must be investigated separately. The factor in 
sin2B in (6.1) comes from the term (k , /k )2  which arises from the generalization of 
(4.17) to a roll with arbitrary orientation. For P + O ,  it has already been argued that 
;&?’-Q and so, in the quasi-steady limit, the minimum value of (Rac-Ra,,,) is 
obtained in the same way as the minimum value of K was determined from (3.14), 
with naturally the same conclusion. For Re, <Re,,, longitudinal rolls in the y-  
direction are preferred whereas for Re, > Re, longitudinal rolls in the x-direction are 
preferred. In either case Ra, > Rac,O. 

The concept of using non-planar flow oscillations to stabilize the fluid state might 
be applicable to certain other fluid stability problems. For instance Takeuchi & 
Jankowski (1981) and Ng & Turner (1982) have shown that a steady axial flow tends 
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to stabilize Taylor vortices occurring between concentric rotating cylinders. In view 
of the quasi-steady result obtained here, there is reason to expect stabilization also 
for the case, say, when one cylinder oscillates in the axial direction about a zero 
mean. 

The work of H.-C. Hu was supported in part by a grant from the Academic Senate 
of UCLA. Finally revisions to this paper were made with support from the National 
Science Foundation under grant CTS 9123553. 

Appendix. The disturbance mechanical energy equation for the case of 
planar oscillations 

In order to gain insight into the mechanism of stabilization, the mechanical energy 
equation for a transverse roll acted upon by a planar oscillation in the x-direction has 
been investigated. For this case, of course, transverse rolls are not the most unstable 
type of disturbance. However, it should now be clear that the mechanism causing the 
factor 9 in (3.12) to be greater than zero is similar to the mechanism causing 
transverse rolls to be stabilized by a planar oscillation, and so the following results 
are certainly relevant to the non-planar case. For steady flow, the mechanism of 
stabilization has been discussed by Asai (1970) and Lipps (1971). 

If we start with the linearized form of the momentum equations in the (x, z)-plane, 
multiply the x-momentum equation by u, the z-momentum equation by w, add the 
results and integrate over a wavelength and the fluid depth, we obtain the 
mechanical energy equation for the disturbance. In  non-dimensional form, it is 

($(u2+w2)) dz = R e  

where (. . .) denotes an average over a wavelength. The first integral on the right- 
hand side of (A 1) represents the rate of transfer of energy between the basic flow and 
the disturbance, the second integral represents the rate of release of buoyant energy, 
and the third integral represents the rate at  which energy is dissipated by viscosity 
and is always positive. We will be interested in determining how the integrands of 
these three integrals depend upon z. 

Again assuming that Re -4 1,  we expand u in powers of R e  along with w and 0, as 
done in $3, except that the terms representing non-planar effects (e.g. W,, in ( 3 . 4 ~ ) )  
are now taken to be zero. Once these expansions are substituted into the integrands, 
we can express the integrands as follows: 

= Re(r , ( z )e i t+ . i . , (~)e- i t }+Re2(~2(x)+r2(z )  eZit+F,(z) e-2it}+O(Re3), 

(A 2a)  

+Re2{b,(z)+b2(z)e2i t+b"2(z)e-2i t }+O(Re3)] .  (A 2 b )  

Ra (@w) = Ru [b,(x) +Re {b,(z) eit +6,(z) e@} 

(g-gr) = d,(z)+Re{d,(z)eit+d,(z)e-it} 

+ Re2 {&(z)  + d,(z) eZit + & ( z )  e-2it} + O(Re3),  (A 2 c) 
Because the change in the value of Ra, due to the oscillation is of O(Re2) ,  we are 
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FIGURE 4. (a)  The integrand r&) of  the term in the mechanical energy term representing the mean 
rate of energy transfer between the basic flow and the disturbance due to an oscillation of the lower 
wall. (6) The integrand Ra,,,62(z) of the term in the mechanical energy representing the 
contribution to the mean rate of buoyant energy generation due to the oscillation of the lower wall. 
( e )  The integrand &(z) of the contribution to the mean viscous dissipation due to the oscillation of 
the lower wall. Pr = 10, /3 = 0.5. 
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FIGURE 5. The integrand F&) for the case of an oscillating channel flow. (a) Pr = 100, p = 0.20; 
(b )  Pr = 1, p = 0.50. 

mainly interested in seeing how the terms v2(z), Rac,062(z), and & ( z )  compare. These 
have been evaluated using the normalization W&) = 1 and are shown in order in 
figure 4(a-c) for Pr = 10 and /3 = 0.5 when only an oscillation of the lower wall 
occurs. 

Figure 4 ( a )  indicates that the term ~ ~ ( 2 )  is stabilizing but its importance is 
negligible compared to Ra,,,b,(z) and Z 2 ( z )  as indicated by figures 4(b) and 4(c) .  
Figure 4(b)  indicates that the change in the buoyant release of energy bz(z) actually 
is positive ( ie .  it is destabilizing) due to the oscillation. However, as figure 4(c )  
indicates, the dissipation function increases even more and appears to be the major 
stabilizing factor for this case. Similar trends occur for Pr = 1000 when p = 0.05. It 
should be mentioned that the integrated values of these functions have been checked 
to give the result that the increase in mean disturbance mechanical energy is zero 
when Ra = Ra,. 

For the case of pulsating Poiseuille flow, the integrands of the buoyancy and 
dissipation terms are qualitatively similar to those shown for Couette flow in figure 
4. However, the integrand of the term involving the basic shear differs, as shown in 
figure 5(a, b) .  Numerical maxima now occur away from the mid-channel point. 
Furthermore, as figure 5 (b )  indicates, both positive and negative maxima can occur 
for the low-PT case. Although the integrand is not entirely of one sign, the integrated 
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effect still tends to be stabilizing. It will be of interest to see if this result occurs also 
for finite-amplitude flow oscillations. 
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